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In Part I we built a stock price model that is a function of a Poisson process, and in Part II we built a stock price
model that is a function of a Compound Poisson process. In this white paper (Part III) we will build a Jump
Diffusion model for stock price.

Our Hypothetical Problem

We are tasked with building a model to forecast ABC Company stock price given the following go-forward model
assumptions...

Table 1: Go-Forward Model Assumptions

Symbol Description Value

S0 Stock price at time zero ($) 10.00
µ Expected return mean (%) 15.00
σ Expected return volatility (%) 30.00
ω Jump size mean (%) 2.50
υ Jump size volatility (%) 6.00
λ Average number of annual jumps (#) 4.00
t Time in years (#) 3.00

Our task is to answer the following questions...

Question 1: What is random stock price at the end of year 3 given that there were k = 10 jumps drawn from a
Poisson distribution and y = 0.65 and x = -1.25 drawn from a normal distribution.

Question 2: What is expected conditional stock price at the end of year 3 given that there were 10 jumps over
the time period [0, 3]?

Question 3: What is expected unconditional stock price at the end of year 3?

Conditional Stock Price

In Part II we defined the variable φ to be total return excluding jumps, the variable ω to be jump size mean, and
the variable υ to be jump size volatility. In Part II we defined random conditional stock price via the Compensated
Poisson Process to be the following equation... [2]
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Using Equation (1) above the equations for expected conditional and unconditional stock price from Part II are... [2]
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In Equation (2) above the variable µ is a known constant (i.e. is not random). For our jump diffusion model we
want to make the variable µ a normally-distributed random variable (the diffusion part of jump diffusion). If we
define the variable σ to be return volatility and the variable x to be a normally-distributed random variable with
mean zero and variance one then the equation for random total return is...
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Note that the random variable x in Equation (3) above is independent of the random variable y in Equation (1)
above. Using the definition in Equation (3) above we can rewrite Equation (1) above as...
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We will define the random variable A to be the following equation...
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The equation for the expected value of Equation (5) above is...
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We will define the random variable B to be the following equation...
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The equation for the expected value of Equation (7) above is...
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Using Equations (5) and (7) above we can rewrite Equation (4) above as...

S(k)t = S0 Exp
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If the standardized normally-distributed random variables y and z above are independent, which they are, then the
equation for the expected value of Equation (9) above is...
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Using Equations (6) and (8) above the solution to Equation (10) above is...
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Unconditional Stock Price

In Part One we defined the variable λ to be jump intensity, which is the average number of jumps realized over
a given time interval, and the variable k to be the number of jumps realized over the time interval [0, t]. The
number of jumps is a Poisson-distributed random variable. The equation for the probability of k jumps over the
time interval [0, t] is... [3]
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Using Equations (11) and (12) above the equation for expected unconditional stock price at time t is... [1]
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The Answers To Our Hypothetical Problem

Question 1: What is random stock price at the end of year 3 given that there were k = 10 jumps drawn from a
Poisson distribution and y = 0.65 and x = -1.25 drawn from a normal distribution.

Using Equation (4) above and the data in Table 1 above the answer to the question is...

S(10)3 = 10.00× Exp

{
0.15× 3− 4× 0.025× 3 + 10× ln(1 + 0.025)− 1

2
× 0.302 × 3

− 10× 1

2
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√
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√
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}
= 7.54 (14)

Question 2: What is expected conditional stock price at the end of year 3 given that there were 10 jumps over
the time period [0, 3]?

Using Equation (11) above and the data in Table 1 above the answer to the question is...

E
[
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]
= 10.00× Exp
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}
= 14.87 (15)

Question 3: What is expected unconditional stock price at the end of year 3?

Using Equations (13) above and the data in Table 1 above the answer to the question is...

E
[
S3

]
= 10.00× Exp
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0.1500× 3

}
= 15.68 (16)
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